Syllabus of the presentation

• DFT Convergence to FT

• Convergence Theorems for Uniform Grids

• Convergence Theorems for Non Uniform Gaussian Grids

The Call Price computed via Convergence Theorem is equal to the Call Price computed via Trapezoid/Simpson Quadrature Rule

61

62

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Non Uniform Discretization Grid

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points

Gander Gautschi

Condition 1

Gaussian Grids

Optimal choice of discretization points

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points

Condition 1

Gaussian Grids

Optimal choice of discretization points

Convergence Theorems for Non Uniform Gaussian Grids

Condition 2

N≠M

General DFT

$$\omega(m) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j) \qquad \text{where } \mu=1,2,\square,M$$

The Convergence Theorem (C Th)

$$\mathcal{F}[f(x)](t_m) = \lim_{N \to \infty} \frac{X}{N} \omega(m)$$

$$t_m = \frac{2\pi}{X}(m-1)$$

69

Convergence Theorems for Non Uniform Gaussian Grids

1.

$$C_0 = \frac{e^{-\alpha \ln K}}{\pi} \int_0^{+\infty} \Re \left(e^{i\xi \ln K} \frac{e^{-rT} f_2(\xi - (\alpha + 1)i)}{\alpha^2 + \alpha - \xi^2 + i(2\alpha + 1)\xi} \right) d\xi$$

$$f(v_{j-1}) = e^{\left[1+i\left(rac{M\pi}{a*}-\ln S_t
ight)
ight]v_{j-1}}\psi_0(v_{j-1}) \quad rac{1}{L_{N+1}(v_{j-1})L_N'(v_{j-1})}$$

$$C_0([\ln K]_u^*) \approx -\Re\left[\frac{e^{-\alpha\left(\ln S_t - \frac{M\pi}{a^*} + \frac{2\pi}{a^*}(u-1)\right)}}{\pi} \frac{1}{N+1} \cdot \omega^*(u)\right]$$

Gaussian Grids for f

1.
$$f(v_{j-1}) = e^{\left[1+i\left(\frac{M\pi}{a*}-\ln S_t\right)\right]v_{j-1}}\psi_0(v_{j-1}) \frac{1}{L_{N+1}(v_{j-1})L_N'(v_{j-1})}$$

2.
$$f(\frac{1}{2}a(1+v_{j-1})) = e^{[1+i(\frac{M\pi}{a*}-\ln S_t)]\frac{1}{2}a(1+v_{j-1})}\psi_0(\frac{1}{2}a(1+v_{j-1})) \frac{1}{[P_{N-1}(v_{j-1})]^2}$$

70

Convergence Theorems for Non Uniform Gaussian Grids

2.

$$C_{0} = \frac{e^{-\alpha \ln K}}{\pi} \int_{0}^{+\infty} \Re \left[e^{i\xi \ln K} \frac{e^{-rT} f_{2}(\xi - (\alpha + 1)i)}{\alpha^{2} + \alpha - \xi^{2} + i(2\alpha + 1)\xi} \right] d\xi$$

$$f(\frac{1}{2}a(1 + v_{j-1})) = e^{[1+i(\frac{M\pi}{a^{*}} - \ln S_{t})]\frac{1}{2}a(1+v_{j-1})} \psi_{0}(\frac{1}{2}a(1 + v_{j-1})) \frac{1}{[P_{N-1}(v_{j-1})]^{2}} + C-Th$$

$$C_0([\ln K]_u^*) \approx \Re\left[\frac{e^{-a(\ln S_i - \frac{M\pi}{a*} + \frac{2\pi}{a*}(u-1))}}{\pi} \frac{1}{N(N-1)} \cdot \omega^*(\frac{1}{2}a(1+\nu_{j-1}))\right]$$

The Call Price computed via Convergence
Theorem is equal to the Call Price computed
via Gauss Laguerre/Gander Gautschi
Quadrature Rule

73

Fast Option Pricing

Fast Fourier Trasform Algorithms

- Option Pricing via DFT
 - FT Pricing formula
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Uniform FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - •The Computational Framework: Speed, Stability, Accuracy
- Conclusions

.

Fast Option Pricing

Uniform FFT

77

Uniform FFT

Cooley-Tukey DFT Characterization

Iterated Bottom – Up for N stages

It gives the FFT Cooley - Tukey Algorithm

- Option Pricing via DFT
 - FT Pricing formula
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Uniform FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - •The Computational Framework: Speed, Stability, Accuracy
- Conclusions

/ 6

Uniform FFT

The DFT computational cost drops

81

Uniform FFT

Since the Nyquist – Shannon Limit, the pricing formulas

Give accurate prices
ONLY

Around the Nyquist Frequency

Approx. 25% of prices can be accepted

Since the Nyquist – Shannon Limit, the pricing formulas

Give accurate prices
ONLY

Around the Nyquist Frequency

82

Syllabus of the presentation

- Option Pricing via DFT
 - FT Pricing formula
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Uniform FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - •The Computational Framework: Speed, Stability, Accuracy
- Conclusions

Non Uniform FFT

Gaussian Gridding

85

86

Non Uniform FFT

Gaussian Gridding

Step 1

Gaussian Projection of the non uniformly sampled characteristic function on a oversampled uniform grid

Non Uniform FFT

Gaussian Gridding

Step 1

Gaussian Projection of the non uniformly sampled characteristic function on a oversampled uniform grid

$$f_{\tau}(x) = \sum_{j=0}^{N-1} f(x_j) \sum_{k=-\infty}^{\infty} e^{-\frac{(x_j - x - 2k\pi)^2}{4\tau}}$$

Non Uniform FFT

Gaussian Gridding

Step 2

Non Uniform FFT

Gaussian Gridding

Step 2

FFT computation on the oversampled grid of the Fourier Coefficient of the reprojected characteristic function

Gaussian Gridding

Step 2

FFT computation on the oversampled grid of the Fourier Coefficient of the reprojected characteristic function

$$F_{\tau}(n) = \frac{1}{2\pi} \int_{0}^{2\pi} f_{\tau}(x) e^{-ix(n-1)} dx$$

93

Non Uniform FFT

Gaussian Gridding

Step 4

homothetic rescaling from Gaussian scale

Gaussian Gridding

Step 3

Elimination of frequencies greater than Nyquist – Shannon Limit

94

Non Uniform FFT

Gaussian Gridding

Step 4

homothetic rescaling from Gaussian scale

Non Uniform FFT

The major computational cost of the Procedure is the FFT on the oversampled grid

97

98

Non Uniform FFT

Computational Cost

The major computational cost of the Procedure is the FFT on the oversampled grid

Choosing the oversampling ratio

$$M_{\tau}=2M$$

Non Uniform FFT

Computational Cost

The major computational cost of the Procedure is the FFT on the oversampled grid

Choosing the oversampling ratio

$$M_{\tau}=2M$$

The total cost of the procedure is $\approx 2M \log 2M$

Syllabus of the presentation

- Option Pricing via DFT
 - FT Pricing formula
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Uniform FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - •The Computational Framework: Speed, Stability, Accuracy
- Conclusions

101

The Computational Framework

STABILITY

ACCURACY

102

The Computational Framework

STABILITY

The error of 90% of prices computed lies in the

STABILITY

The error of 90% of prices computed lies in the

RANGE OF PRECISION

The Computational Framework

At very low time scales, the differences disappear

the NU - FFT is around 2 time slower than FFT

The Computational Framework

At very low time scales, the differences disappear

	NC2	G – LA	G - LO
FFT	0.01 sec.	N/A	N/A
NU – FFT	NC2	G - LA	G - LO
	0.02 sec.	0.0261 sec.	0.0301 sec.

Computation of 4000 prices on a Centrino 1600Mhz - 2gb RAM Mean Value over 1000 runs

Syllabus of the presentation

- Option Pricing via DFT
 - FT Pricing formula
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Uniform FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - •The Computational Framework: Speed, Stability, Accuracy
- Conclusions

Conclusions

- NU FFT allows the use of Gaussian Grids
- NU FFT is indifferent to Nyquist _Shannon Limit

Conclusions

• NU - FFT allows the use of Gaussian Grids

Conclusions

- NU FFT allows the use of Gaussian Grids
- NU FFT is indifferent to Nyquist _Shannon Limit
- NU FFT is at least as accurate as FFT

- NU FFT allows the use of Gaussian Grids
- NU FFT is indifferent to Nyquist _Shannon Limit
- NU FFT is at least as accurate as FFT
- NU FFT is more stable than FFT

113

Conclusions

NU-FFT

is a natural candidate for operational use on trading desks

- NU FFT allows the use of Gaussian Grids
- NU FFT is indifferent to Nyquist _Shannon Limit
- NU FFT is at least as accurate as FFT
- NU FFT is more stable than FFT
- NU FFT speed performances are indistinguishable from FFT's ones

114

